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Abstract—The laminar boundary layer flow over an arbitrarily inclined semi-infinite flat plate, either heated
or cooled, is studied to determine the influence of the buoyancy forces on the basic forced convection flow.
The complete range of inclination angles including the special cases of the horizontal and the vertical plate
is covered by taking into account both components of the gravity vector, normal and parallel to the
surface. The systematical variation of free parameters is continued by studying different thermal boundary
conditions and by variation of the Prandtl number (discussed in Part IT). One remarkable result of this
study is the finding, that for opposing buoyancy forces singular as well as regular behaviour can occur.

1. INTRODUCTION

MIXED convection from horizontal and vertical plates
has already been studied extensively by numerous
authors [1-7], but only a few contributions have been
made for the plate with arbitrary inclination angle.
Although it can be stated in general that the buoyancy
forces at an arbitrarily inclined plate have the same
effect as those in an analogous boundary layer at the
vertical plate, if only the component of the gravity
vector parallel to the plate is taken into account, this
is no longer true for horizontal or nearly horizontal
surfaces. In the study of Jones [8] on free convection
from flat plates slightly inclined to the horizontal it is
demonstrated that there are two different mechanisms
of buoyancy force influence on the boundary layer
flow. These two mechanisms are associated with the
two components of the gravity vector, parallel and
normal to the surface. An example, where only the
parallel component exists, is the free convection from
the vertical plate, which was analysed first by
Pohlhausen [9]. Since the flow in this case is driven by
the buoyancy forces directly, this kind of free con-
vection is denoted here ‘direct free convection’. For
the horizontal flat plate only the component of the
gravity vector normal to the surface exists. Never-
theless, a boundary layer type flow parallel to the
surface can be generated by heating the upper side of
the plate, as was demonstrated by Stewartson [10].
An internal favourable pressure gradient parallel to
the plate is induced by the buoyancy forces working
normal to the plate, thus driving the flow indirectly.
Therefore, this effect is denoted here ‘indirect free
convection’. Thus three physical mechanisms driving
the flow have to be taken into account: the forced
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convection due to the oncoming uniform main stream,
the indirect free convection and the direct free con-
vection. Therefore, in a mixed convection flow at an
inclined surface two buoyancy parameters as ratios of
two out of the three convection effects are needed to
describe the behaviour of the boundary layer flow.

Mucoglu and Chen [11] demonstrated by a few
examples for fixed Reynolds numbers that the indirect
free convection is of importance only for plates with
small inclination angles to the horizontal, but they did
not identify both of the two independent buoyancy
parameters. Thus a general solution for the inclined
plate problem has not been given yet.

For opposing buoyancy forces flow separation is
encountered. A Goldstein-type singularity was found
by Merkin [4] for the mixed convection from the ver-
tical plate held at a constant temperature. This result
was confirmed by Hunt and Wilks [2], who in addition
provided the solution for uniform surface heat flux.
For mixed convection from the horizontal plate a
similar type of singularity is expected. In the vicinity
of the separation point numerical problems have been
reported by several authors [5-7, 11, 12]. In contrast
to this Jones [8] found a regular behaviour at the
separation point for the problem of mixed indirect and
direct free convection. Therefore, the determination of
location and type of separation point was the most
important question in the cases with opposing buoy-
ancy forces.

2. BOUNDARY LAYER EQUATIONS

The configuration considered is sketched in Fig. 1.
The boundary layer equations read (in dimensional
form assuming laminar flow and that variable
fluid properties can be taken into account by the
Boussinesq approximation)
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NOMENCLATURE
¢ friction coefficient, equation (17) B coefficient of thermal expansion
Cy specific heat capacity n dynamic viscosity
e exponent of temperature distribution, Ny scaled y-coordinate for velocity boundary
equation (7) layer, equation (7)
¥a scaled streamfunction, equation (7) 9 reduced dimensionless temperature,
g*  gravitational acceleration equation (7)
Gr  Grashof number, equation (5) 0 dimensionless temperature
Gr  modified Grashof number for / thermal conductivity
¢, = const., equation (14) v kinematic viscosity
L*  reference length density

N y-coordinate scaled with \/(Re),
equation (5)

Nu  Nusselt number, equation (18)

p pressure

Pe  Peclet number, Re Pr

Pr  Prandtl number, equation (5)

¢, wall heat flux

Re  Reynolds number, equation (5)

T temperature

u, ¥ velocity components

U, reference velocity

U, free-stream velocity

x,y coordinate system.

Greek symbols
o inclination angle

Ty wall shear stress.

Subscripts
s scaled for the velocity boundary layer
S separation
w wall value
X local quantity
oo free-stream value.

Superscripts

* dimensional quantity
derivative with respect to #,
modified for ¢, = const.
scaled quantity.

’

F1G. 1. The coordinate system for mixed convection from an
arbitrarily inclined flat plate.
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(with Uf = U*).

The pressure p is the deviation from the static press-
ure in the ambient, the so-called modified pressure. In
contrast to Prandtl’s classical boundary layer theory
the pressure in the boundary layer is no longer deter-
mined by the pressure field outside. Nevertheless this
is strictly in line with the boundary layer concept as
an asymptotic theory for infinite Reynolds numbers.

The influence of direct free convection is rep-
resented by the buoyancy term in the x-momentum
equation (2). The indirect free convection can be
identified with the buoyancy term in the y-momentum
equation (3). Thus the two dimensionless com-
binations in the buoyancy terms characterize the
strength of the two buoyancy effects

Gr . direct free convection
—sing s —————
Re? forced convection
Gr indirect free convection

——cosa = -
Re*? forced convection

The governing equations (1)—(4) are subject to the
following boundary conditions:
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u(x,00 =0, O(x,0 =1 (T, = const.)

_ 0 .
(x,0) =0, —aT,(x, 0) = const. (¢, = const.)

u(x,0)=1, B(x,00)=0
plx, c0) = 0. (6)

To simplify the mathematical analysis the basic equa-
tions are rewritten in terms of the streamfunction ,
thus satisfying the continuity equation (1) implicitly.
The following similarity transformation is introduced
in order to reduce the problem at the leading edge
{(x = 0) to the well-known Blasius solution and to
keep x-derivatives finite in this region :

no=x"""N

x, = x'+e

f=xy

§=x"¢ 7
(e = 0for T, = const.,, e = — 3 for ¢, = const.).

The transformed set of equations then is

) , Gr |
fl!1+%ff'fl - _xi2+ze>,<!+2e}R . sina §
e

\ Gr
— 3 X ReT? cosa @

o o of
1 y e
+x5<z+e}(axs e a ) ) ®
i Gr

p =xsk;e—5/—zcosoc9 )]

S+ iPrfY —e Prf3
a8 of
_— l /“’_“_ —_— Z
= Prx(3+e) (f o, axSQ) (10)

(primes denote partial derivatives with respect to 7,
e=0 for T, = const., e =) for ¢, = const.). The
transformed boundary conditions are

flx,00=0, I(x,0=1, T, = const.

f &0 =0, 30,0 =1 } i — const.
S(x,0) =1, ¥(x,0) = 3(0,0)

plx, ) =0, J(x,00)=0. (n

The problem described by the above set of equations
(8)-(11) still has four free parameters. Since the two
buoyancy parameters are associated with the length
scale L*, which for a semi-infinite flat plate is purely
formal, the number of free parameters can be reduced
by one by introducing local quantities for the buoy-
ancy parameters

Gr

P o P+e ;
QI = X, ¢ sin o 12
Re? *  Re* (12)
. Gr
X 1/2+e¢
—5 COS o = X, - COS 0. 13
Re_flz s Re™? (13)
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The wall values of the solution are now only functions
of the two local buoyancy parameters, the Prandtl
number and the temperature exponent e.

For the constant surface heat flux case this rep-
resentation is still inadequate, since there is no well-
defined temperature difference to form a suitable
Grashof number. Thus a modified Grashof num-
ber is introduced especially for the constant heat flux
case

s Bratgreor’
Gr. = g (14)
Adequate buoyancy parameters for the constant sur-

face heat flux case according to this definition are

Gr, G
aoEsina = x/*2Trsina(-80,0))  (15)

Gr, Gr

! H2+e
cosa = x

Re’ * ReT?

cos a(—9(0,0)) (16)

(with e = } for ¢,, = const.),

By these equations the buoyancy parameters that
have to be fixed for the numerical calculations can be
related to known quantities for the constant heat flux
case.

The numerical results are presented as well in terms
of dimensionless quantities. Wall shear stress is given
in terms of the local friction coeflicient ¢;,. Heat trans-
fer results are described by the local Nusselt number

*

Cpe = ;)#az = Re;'"? ["(x,,0) an
GEx*

Nue= ey =

— Re}“(@’(xs, 0)/9(x,, 0)).

(18)

The reference velocity U¥ usually is U* . For the case
without main stream velocity (Fig. 4) a reference vel-
ocity based on a characteristic buoyancy quantity is
introduced.

3. NUMERICAL RESULTS FOR Pr=0.72

The governing set of equations (8)—(11) was solved
numerically for Pr = 0.72 incorporating Keller’s box
scheme. A grid of typically 130 points in the y-direc-
tion was used. The complete set of equations, which
was transformed into a system of six first-order
differential equations, was solved simultaneously. The
results are accurate to at least three significant digits.
For details of the numerical solution see ref. [14].

Prior to analysing the general solution those cases
with only two of the three physical mechanisms pre-
sent will be considered. For mixed convection from a
vertical flat plate only forced convection and direct
free convection have to be taken into account, In Figs.
2(a)—(d) skin friction and heat transfer results for the
vertical plate are plotted vs the local direct free
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FiG. 2. Friction coefficient and Nusselt number for mixed convection from a vertical flat plate: (a), (b)
constant wall temperature ; (c), (d) constant surface heat flux.
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convection buoyancy parameters. For aiding free con-
vection both wall shear stress and heat transfer
increase monotonically, whereas for opposing buoy-
ancy forces both quantities decrease until separation
occurs. The separation points are Gr /Rel sin alg =
—~0.1806 for constant wall temperature and Gr,/
Re¥?sinajs = —0.07918 for constant surface heat
flux. Both cases exhibit square-root singularity behav-
iour in the vicinity of the separation point. This singu-
larity at separation has been investigated by Merkin
[4] and by Hunt and Wilks [2]. They found it to be
very similar to the well-known Goldstein singularity
for separation due to an external pressure gradient.

Mixed convection from the horizontal plate is
shown in Figs. 3(a)-(d). Here only forced and indirect
free convection are present. Nevertheless the results
are roughly similar to those for the vertical plate. The
aiding case has been investigated by various authors
[1, 5-7] and the results are no longer a point of dis-
cussion. But this is not true for the opposing case. For
this case numerical results were supplied by Schneider
and Wasel [7] and by Raju er al. [5]. Both studies
claimed a singular behaviour at a point with finite
positive wall shear stress. The numerical results of the
present study cannot support these findings, although
it must be stated, that for all cases with opposing
indirect free convection the numerical solution is
extremely difficult. A detailed discussion of the
numerical problems, which cannot be regarded as
fully understood, is given in ref. [14]. Nevertheless the
new numerical data are believed to be the most reliable
results available for the problem.

The solution near separation again is of the square-
root-singularity type with the origin of the singularity
fixed at the point of zero wall shear stress. Up to now,
the basis for this statement is more or less empirical
leaving the answer to a theoretical investigation fol-
lowing the lines of the analysis by Goldstein {13] and
Stewartson [15]. The separation points predicted for
the horizontal flat plate are Gr./ReX? cosals =
—0.08878 for the constant wall temperature and
Gr JRe? cos xlg = —0.03120 for the constant sur-
face heat flux case. As for the vertical plate the
heat transfer remains finite at separation, although
a strong gradient for the heat transfer rate is found
near the singularity.

A third case with only two of the three mechanisms
present is the free convection from a slightly inclined
horizontal plate. The basic indirect free convection
is disturbed by the direct free convection buoyancy
forces, either in an aiding or in an opposing manner.
For this flow the initial solution at x = 0 is not the
Blasius profile, so that equation (7) is no longer ade-
quate. In addition different buoyancy parameters,
(Gr, cos 2) /% cos o for T, = const. and (Gr cos a) /¢
x tan « for ¢, = const., have to be introduced. The
resulting equations are not given here, since they are
given in Jones [8], who investigated this problem for
the first time (only 7', = const.), and in ref, [14] (both
T, and ¢, = const.).
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The most important feature of the solution by Jones
was the complete regularity at the point of vanishing
skin friction. Although a strong growth of boundary
layer thickness was observed in the separated flow
region, the growth rate remained finite for all x. This
increase in boundary layer thickness is part of the
mechanism enabling the solution to stay regular at
separation. The effect of indirect free convection,
which is responsible for the original forward flow, is
proportional to the boundary layer thickness. Thus
the boundary layer growth enhances the forward flow
again, as soon as a backward flow region begins to
develop. Thus a balance between aiding and opposing
buoyancy forces is kept even beyond the separation
point. Mathematically this balance manifests itself in
the non-trivial y-momentum equation (3).

By means of the nowadays largely extended
computational facilities it was possible to extend
Jones® solution further downstream. In addition
the analysis was extended to include the constant sur-
face heat flux boundary condition. The results are
sketched in Figs. 4{(a)-(d) (in ¢, now Uf =
(B*AT* cos o g*L*~ ¥2*v'"1)2%) 1t should be pointed
out that for opposing direct free convection the nega-
tive skin friction in the backward flow region does not
grow monotonically, but takes a maximum and then
decreases again tending to zero asymptotically. The
structure of the separated flow far beyond the point
of zero skin friction, which can be analysed by the
method of matched asymptotic expansions, will be
discussed in an additional paper {16].

In the constant heat flux results a strange oscillation
of the friction coefficient occurs in the separated
region. Up to seven zeroes could be resolved by the
numerical computations. Probably there is no physi-
cal counterpart for this solution behaviour; never-
theless the solution obviously is correct from a purely
mathematical point of view and it is of some interest
due to its curiosity. The velocity profiles of this solu-
tion (not given here, see ref. [14]) have as many zeroes
as the skin friction distribution upstream of the x
location under consideration.

The location of the separation point is (Gr,
xcosa)'Stan a)g = ~2.224 for T, = const. and
(Gr.cosa)/®tanalg = —2.830 for 4, = const.,
respectively.

The heat transfer results are similar for both ther-
mal boundary conditions. In the aiding case the trans-
fer rate is increasing monotonically, whereas in the
opposing case it decreases and finally tends to zero.
This is due to the strong boundary layer growth for the
separated flow resulting in a vanishing temperature
gradient at the wall.

A special diagram has been developed to present
the complete solution in one picture, sketched in Fig.
S. Solutions already known from the literature are
included with their range of validity. Skin friction and
heat transfer results can be plotted as contour maps
into the plane defined by the two local buoyancy par-
ameters. For any given configuration (f*, AT*, g*,
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FiG. 3. Friction coefficient and Nusselt number for mixed convection from a horizontal flat plate : (a}, (b)
constant wall temperature ; (c), (d) constant surface heat flux.
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horizontal : (a), (b) constant wall temperature ; (c), (d) constant surface heat flux.
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FiG. 5. Structure of a contour map for the complete solution for mixed convection from inclined plates
with references to solutions known from the literature.

a*, v¥, U*) the solution for growing x is located on
parabolas beginning in the mid-point of the diagram.
The parabola for a certain configuration can be iden-
tified by a dimensionless x-independent parameter
combining the original buoyancy parameters. For the
constant wall temperature case this combination is

Gr, 2
— X cosa
5;2
Grcos® o Re;
Gr,
Re?

x

Re¥sina .
sin «

for the constant surface heat flux case it is

—cos
ES 3
Greos® o Re;

Re*sin? o ((’;rY ) )2'
—-sin a
5:2
Re;

Only two free parameters are left in the diagram, the
thermal boundary condition and the Prandtl number.
In Figs. 6(a) and (b) the results for the case
T, = const. are shown together with a solution for
vanishing mainstream velocity. This asymptotic solu-
tion can be extracted from Jones’ study of free con-
vection at the flat plate slightly inclined from the hori-
zontal. From these pictures it can be concluded that
the solution on the right-hand side of the diagram
(Gr./Rey* cos & > 0) is similar to the one given by
Jones (Fig. 5) with regular behaviour at separation.
For Gr./Re¥? cos o < 0 (left-hand side of the dia-
gram) the solution is roughly similar to the singular solu-

tions of Figs. 3 and 4. Thus major parts of the diagram
(left-hand side) cannot be filled by boundary layer
theory calculations. The parabola marked in the
upper left part is the limiting case of marginal separ-
ation. For a solution in the left neighbourhood of this
line, a separation bubble would exist in the real flow.
The numerical boundary layer solution is terminated
by a singularity at the onset of backflow. The same
mechanism that keeps the solutions regular in the
right half of the diagram supports the singularity in
the left half. In both cases the opposing buoyancy
forces are enhanced by the boundary layer growth.

The results for ¢,, = const. in Figs. 7(a) and (b) are
qualitatively similar to those for T,, = const. The only
major differences occur in the lower right part of
the diagram where regular separation is found. These
differences are principally the same as those for pure
free convection in Figs. 5(a) and (c).

The singularity found by Merkin for mixed con-
vection at the vertical plate is an important point in
all these diagrams. This solution obviously marks the
limit between singular and regular behaviour at sep-
aration. In the vicinity of this point the gradients
observed in the contour plots are increasing strongly
with decreasing distance to the singularity. The devel-
opment of Merkin’s singularity from the original reg-
ular behaviour can be analysed by an asymptotic
approach, which will be discussed in a subsequent
paper [16].

Since the results in the upper right parts of the
contour maps (purely accelerated flows) have a rather
simple structure, it was possible to represent thesc
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results by correlation equations. Such simple equa-
tions make the numerical data easily accessible for
practical use, reducing the huge amount of data to a
few constants. The correlation equations and their
derivation are described in the Appendix.

4. CONCLUSIONS

A systematic approach covering all cases of mixed
convection from an inclined flat plate has been
developed. The dependence of the local skin friction
coefficient and Nusselt number on the inclination
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angle, on the thermal boundary condition, and on the
fluid properties has been reduced into an adequate set
of dimensionless numbers and then been discussed
qualitatively on the basis of plotted results of the
numerical solution. For a qualitative survey of the
solutions, a special contour map diagram has been
developed showing friction coefficients or Nusselt
numbers over a plane defined by the two local buoy-
ancy parameters. Quantitative results are provided
for the accelerated flow cases by means of simple
correlations given in the Appendix covering the whole
range of free parameters including the influence of the



1944

Prandtl number, although the detailed analysis for
low and high Prandtl numbers will be given in Part
I1. For the cases with opposing buoyancy forces the
separation points have been determined and the
behaviour in the vicinity of the point of zero skin
friction has been analysed whether the separation is
singular or regular. A more detailed discussion of
the phenomena encountered during the analysis of
regular and singular separated flows will be given in
an additional paper.
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G. WICKERN

APPENDIX

Following a proposal by Churchill and Usagi [17] a simple
correlation can be derived from the self-similar solutions of
the basic flows of pure forced and pure free convection. Thus
the huge amount of data produced during the numerical
solution of the complete partial differential equations can be
reduced to a form suitable for publication. The results of the
correlation were tested versus the exact numerical solution
and a maximum error of 5% was found.

There are two sets of correlation equations corresponding
to the two different thermal boundary conditions
T, = const. and ¢,, = const. investigated, whereas the depen-
dence on the Prandtl number and on the two buoyancy
parameters is taken into account by explicit occurrence of
these quantities in the correlations.

T, =const.:

347112731312
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with the results from forced convection similarity solutions

f1.=10.3320

—46]— lid.6

fin = [(0.5642Pr ')~ *5 4+ (0.3387Pr'?)

fio=03320
Jin = [(0.8862Pr"%) =€ 4 (0.4636.Pr /")~ ] 1140

and with results from indirect free convection similarity
solutions

fo = [(L231Pr=¥19) 22 10,9753 Pr ™

Saw = [(0.5755Pr*°) =7 +(0.4562Pr ')~ 27] e

2 = [(1.523Pr~ 1%y ‘“+(1300Pr 112y 12.5)- 1125
= [(0.8309Pr ") 4 (0.6231 Pr'i®) - 7] 12

_\.l] - 4032

and with results from direct free convection similarity
solutions

= [LS13) ™ (L Te6pr oy 1 1Y

S = [(0.6004Pr'?)~ 27 +(0.5028 Py ) = 7]~ 132
Fro = [(LT56Pr= 310740 4 (1.546 P~ 27y~ 40]~ 1140
Fon = [(0.7609Pr%) =28 +(0.6316Pr /%) 28]~ V3,



Mixed convection from an arbitrarily inclined semi-infinite flat plate—I

CONVECTION MIXTE SUR UNE PLAQUE PLANE SEMI-INFINIE—I. INFLUENCE DE
L’ANGLE D’INCLINAISON

Résumé—La couche limite laminaire sur une plaque plane semi-infinie arbitrairement inclinée, chauffée et
refroidie, est étudiée pour déterminer I'influence des forces de flottement sur I'écoulement forcé de base.
Le domaine complet d’angle d’inclinaison incluant les cas particuliers de la plaque horizontale et verticale
est considéré en prenant en compte a la fois les composantes du vecteur gravité, normale et paralléle 4 la
surface. La variation systématique des paramétres libres est faite en étudiant différentes conditions aux
limites thermiques et différents nombres de Prandtl (discussion en seconde partie). Un résultat remarquable
de cette étude est que pour des forces de flottement en opposition il peut apparaitre un comportement
régulier aussi bien que singulier.

GEMISCHTE KONVEKTION AN EINER BELIEBIG GENEIGTEN
HALBUNENDLICHEN PLATTE—I. DER EINFLUSS DES ANSTELLWINKELS

Zusammenfassung—Die laminare Grenzschichtstromung an einer beliebig geneigten halb-unendlichen
ebenen Platte, die entweder geheizt oder gekiihlt ist, wird untersucht, um den EinfluB der Auftriebskrifte
auf die urspriingliche erzwungene Konvektionsstromung zu bestimmen. Alle moglichen Anstellwinkel
einschlieBlich der Sonderfille horizontale und vertikale Platte kénnen durch die Beriicksichtigung beider
Komponenten der Vektors der Erdbeschleunigung, normal und parallel zur Oberfliche, erfasst werden.
Die Untersuchung wird vervollstindigt durch eine Variation der thermischen Randbedingung und der
Prandtl-Zahl (wird in Teil I abgehandelt). Ein bemerkenswertes Ergebnis dieser Arbeit ist die Erkenntnis,
daB bei auftriebsinduzierter Abldsung sowohl singuldres als auch reguldres Verhalten am Abldsepunkt
auftreten kann.

CMEIIAHHAS KOHBEKLIHUS OT MOJIYBECKOHEUYHOM IJIOCKOM ITJIACTHHBI C
IMMPOU3BOJIBHBIM VIJIOM HAKJIOHA—I D®®EKT VIJIA HAKJIOHA

Amsotamms—C [EJIbI0 ONpE/eNeHNA BIMAHAS NONBEMHBIX CHJI HA BBHIHYXIEHHYIO KOHBEKLHMIO HCCIIC-
LyeTcs JIaMMHAPHBLIH MOTpaHHYHBIA CIOH HAa MOMYOGECKOHEWHOH IIIOCKOM IUIACTHHE C MPOM3BOJILHBIM
YIJIOM HAakJIOHA, KOTOpas HAarpeBAaeTCA HJH OXJAXIAeTCH. AHANM3MPYeTCA IUMPOKHH AHANa3oH YINOB
HaKJIOHa (BKmo4as ocofhbie Cliyyau ropH3OHTaILHON M BEPTHKANLHOM IUTACTHH) NPH yueTe 0BeHx KoM-
NOHEHT BEKTOPA CHJILI TAXKECTH, T.€. IONMEPEYHOH H MPONOJLHOH OTHOCHTENBHO NMOBEPXHOCTH. Bapbupo-
BaHME CBOGOAHBIX NAPaMETPOB OCYIUECTBAAETCH 32 CYET MCNOJB3OBAHUA PAZNMYHEIX TEILTOBBIX
TPaHUYHBIX YCJIOBHH B H3MeHeHHA yucna IIpanaTng (cM. BTOpylo yacts paboThl). OmuiM n3 Hanboee
CYIUECTBEHHBIX Pe3yNbTaTOB paboThl ABNAETCH YCTAHOBIEHHE TOTo akTa, YTO NPH AEHCTBHM OPOTHBO-
TIOJIOXHO HAaNPaBJIECHHBIX CHJI MOXeET HaGIIIONaThCA Kak CHHTYJISPHOE, TAK B PEryAApHOE NOBECHHE,
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