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Abstract-The laminar boundary layer flow over an arbitrarily inclined semi-infinite flat plate, either heated 
or cooled, is studied to determine the influence of the buoyancy forces on the basic forced convection flow. 
The complete range of inclination angles including the special cases of the horizontal and the vertical plate 
is covered by taking into account both components of the gravity vector, normal and parallel to the 
surface. The systematical variation of free parameters is continued by studying different thermal boundary 
conditions and by variation of the Prandtl number (discussed in Part II). One remarkable result of this 

study is the finding, that for opposing buoyancy forces singular as well as regular behaviour can occur. 

1. INTRODUCTION 

MIXED convection from horizontal and vertical plates 
has already been studied extensively by numerous 
authors [l-7], but only a few contributions have been 
made for the plate with arbitrary inclination angle. 
Although it can be stated in general that the buoyancy 
forces at an arbitrarily inclined plate have the same 
effect as those in an analogous boundary layer at the 
vertical plate, if only the component of the gravity 
vector parallel to the plate is taken into account, this 
is no longer true for horizontal or nearly horizontal 
surfaces. In the study of Jones [8] on free convection 
from flat plates slightly inclined to the horizontal it is 
demonstrated that there are two different mechanisms 
of buoyancy force influence on the boundary layer 
flow. These two mechanisms are associated with the 
two components of the gravity vector, parallel and 
normal to the surface. An example, where only the 
parallel component exists, is the free convection from 
the vertical plate, which was analysed first by 
Pohlhausen [9]. Since the flow in this case is driven by 
the buoyancy forces directly, this kind of free con- 
vection is denoted here ‘direct free convection’. For 
the horizontal flat plate only the component of the 
gravity vector normal to the surface exists. Never- 
theless, a boundary layer type flow parallel to the 
surface can be generated by heating the upper side of 
the plate, as was demonstrated by Stewartson [lo]. 
An internal favourable pressure gradient parallel to 
the plate is induced by the buoyancy forces working 
normal to the plate, thus driving the flow indirectly. 
Therefore, this effect is denoted here ‘indirect free 
convection’. Thus three physical mechanisms driving 
the flow have to be taken into account: the forced 
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convection due to the oncoming uniform main stream, 
the indirect free convection and the direct free con- 
vection. Therefore, in a mixed convection flow at an 
inclined surface two buoyancy parameters as ratios of 
two out of the three convection effects are needed to 
describe the behaviour of the boundary layer flow. 

Mucoglu and Chen [l l] demonstrated by a few 
examples for fixed Reynolds numbers that the indirect 
free convection is of importance only for plates with 
small inclination angles to the horizontal, but they did 
not identify both of the two independent buoyancy 
parameters. Thus a general solution for the inclined 
plate problem has not been given yet. 

For opposing buoyancy forces flow separation is 
encountered. A Goldstein-type singularity was found 
by Merkin [4] for the mixed convection from the ver- 
tical plate held at a constant temperature. This result 
was confirmed by Hunt and Wilks [2], who in addition 
provided the solution for uniform surface heat flux. 
For mixed convection from the horizontal plate a 
similar type of singularity is expected. In the vicinity 
of the separation point numerical problems have been 
reported by several authors [S-7, 11, 121. In contrast 
to this Jones [8] found a regular behaviour at the 
separation point for the problem of mixed indirect and 
direct freeconvection. Therefore, the determination of 
location and type of separation point was the most 
important question in the cases with opposing buoy- 
ancy forces. 

2. BOUNDARY LAYER EQUATIONS 

The configuration considered is sketched in Fig. 1. 
The boundary layer equations read (in dimensional 
form assuming laminar flow and that variable 
fluid properties can be taken into account by the 
Boussinesq approximation) 
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NOMENCLATURE 

Cf friction coefficient, equation (17) 

cp specific heat capacity 
e exponent of temperature distribution, 

equation (7) 

./ scaled streamfunction, equation (7) 

CI* gravitational acceleration 
Gr Grashof number, equation (5) 
Gr modified Grashof number for 

4% = const., equation (I 4) 
L* reference length 
N y-coordinate scaled with d(Re), 

equation (5) 
Nu Nusselt number, equation (18) 

P pressure 
Pe Peclet number, Re Pr 

Pr Prandtl number, equation (5) 

YW wall heat flux 

Re Reynolds number, equation (5) 
T temperature 

ll, c velocity components 

UH reference velocity 

u, free-stream velocity 

x, I’ coordinate system. 

Greek symbols 

c? inclination angle 

B coefficient of thermal expansion 

II dynamic viscosity 

;rl, scaled y-coordinate for velocity boundary 
layer, equation (7) 

9 reduced dimensionless temperature, 
equation (7) 

0 dimensionless temperature 
i. thermal conductivity 
v kinematic viscosity 

P density 

r* wall shear stress. 

Subscripts 

scaled for the velocity boundary layer 
; separation 
W wall value 
.X local quantity 

m free-stream value. 

Superscripts 
* dimensional quantity 

derivative with respect to I> 
modified for & = const. 

_ 
scaled quantity. 

/ 
The pressure p is the deviation from the static press- 

ure in the ambient, the so-called modified pressure. In 
FIG. 1. The coordinate system for mixed convection from an contrast to Prandtl’s classical boundary layer theory 

arbitrarily inclined flat plate. the pressure in the boundary layer is no longer deter- 

mined by the pressure field outside. Nevertheless this 
is strictly in line with the boundary layer concept as 

(1) an asymptotic theory for infinite Reynolds numbers. 
The influence of direct free convection is rep- 

au _a~ ah Gr ap 
u~++~N=~+--ZsmciO-- 

Re ax 

ap Gr -=-- 
3N Re5’2COS~0 

where 

(2) 
resented by the buoyancy term in the x-momentum 

equation (2). The indirect free convection can be 
identified with the buoyancy term in the y-momentum 

(3) equation (3). Thus the two dimensionless com- 
binations in the buoyancy terms characterize the 
strength of the two buoyancy effects 

(4) 
Gr direct free convection 

Rei sm cI = forced convection 

Gr indirect free convection 
-----coso:~ ________-. 
ReS/2 forced convection 

The governing equations (l)-(4) are subject to the 
following boundary conditions : 
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u(x,O) = 0, 0(x, 0) = 1 (r, = const.) 

6(x, 0) = 0, $(x,0) = const. (& = const.) 

U(X,Co) = 1, @(x,30) =o 

p(x, co) = 0. (6) 

To simplify the mathematical analysis the basic equa- 
tions are rewritten in terms of the streamfunction $, 
thus satisfying the continuity equation (1) implicitly. 
The following similarity transfo~ation is introduced 
in order to reduce the problem at the leading edge 
(X = 0) to the well-known Blasius solution and to 
keep x-derivatives finite in this region : 

VT = x- li2N 

& = x”2+1’ 
f = .x- I”$ 

9 = x-‘8 (7) 

(e = 0 for T, = const., e = - : for Qw = const.). 
The transformed set of equations then is 

Gr 
- hsx, jjp cos 018 

Gr 
p =x,Re5’2COScd 

LY+~PrfS’-e Prf’S 

(primes denote partial derivatives with respect to Q, 
e = 0 for T,,, = const., e = i for & = const.). The 
transformed boundary conditions are 

ffx,. 0) = 0, 8(X,, 0) = 1, T, = const. 

.f”(x,, 0) = 0, $(O, 0) = 1 

f’(x,, co) = 1, I 
& = const. 

lY(x,,O) = Y(O,O) 

P(X*, Go) = 0, 9(X,, co) = 0. (11) 

The problem described by the above set of equations 
(8)-(11) still has four free parameters. Since the two 
buoyancy parameters are associated with the length 
scale L*, which for a semi-infinite flat plate is purely 
formal, the number of free parameters can be reduced 
by one by introducing local quantities for the buoy- 
ancy parameters 

Gr, . I+*’ (3 
R sm CL = x, FeY an u (12) 

Gr, Gr __._~OS t( = X;~2+~- 
ReTI2 Ref!2 

cos lx. (13) 
I 

The wall values of the solution are now only functions 
of the two local buoyancy parameters, the Prandtl 
number and the temperature exponent e. 

For the constant surface heat flux case this rep- 
resentation is still inadequate, since there is no well- 
defined temperature difference to form a suitable 
Grashof number. Thus a modified Grashof num- 
ber is introduced especially for the constant heat flux 
case 

(14) 

Adequate buoyancy parameters for the constant sur- 
face heat flux case according to this definition are 

C;‘r 
-cosz=x~~‘+~~cos~~(-~(0,0)) (16) 
Re.? 

(with e = i for cjw = const.). 
By these equations the buoyancy parameters that 

have to be fixed for the numerical calculations can be 
related to known quantities for the constant heat flux 
case. 

The numerical results are presented as well in terms 
of dimensionless quantities. Wall shear stress is given 
in terms of the local friction coefficient c,. Heat trans- 
fer results are described by the local Nusselt number 

Cry = p: u,*2 _____ = Re; ‘/2f”(~,, 0) (17) 

Cj:x* 

Nux = l&(T_*- Tz) 
= - Re:‘“(s’(x,, 0)/9(x,, 0)). 

The reference velocity U$ usually is U*,. For the case 
without main stream velocity (Fig. 4) a reference vel- 
ocity based on a characteristic buoyancy quantity is 
introduced. 

3. NUMERICAL RESULTS FOR Pr=O.72 

The governing set of equations (8)-( 11) was solved 
numerically for Pr = 0.72 incorporating Keller’s box 
scheme. A grid of typically 130 points in the y-direc- 
tion was used. The complete set of equations, which 
was transformed into a system of six first-order 
differential equations, was solved simultaneously. The 
results are accurate to at least three significant digits. 
For details of the numerical solution see ref. [ 141. 

Prior to analysing the general solution those cases 
with only two of the three physical mechanisms pre- 
sent will be considered. For mixed convection from a 
vertical flat plate only forced convection and direct 
free convection have to be taken into account. In Figs. 
2(a)-(d) skin friction and heat transfer results for the 
vertical plate are plotted vs the local direct free 
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FIG. 2. Friction coefficient and Nusselt number for mixed convection from a vertical flat plate: (a), (b) 
constant wall temperature; (c). (d) constant surface heat flux. 



Mixed convection from an arbitrarily inclined semi-infinite Aat plate-1 1939 

convection buoyancy parameters. For aiding free con- 
vection both wall shear stress and heat transfer 
increase monotonically, whereas for opposing buoy- 
ancy forces both quantities decrease until separation 
occurs. The separation points are Gr,/Rez sin & = 
-0.1806 for constant wall temperature and Gr,/ 
Rez!* sin ~~1s = -0.07918 for constant surface heat 
flux. Both cases exhibit square-root singularity behav- 
iour in the vicinity of the separation point. This singu- 
larity at separation has been investigated by Merkin 
[4] and by Hunt and Wilks [2]. They found it to be 
very similar to the well-known Goldstein singularity 
for separation due to an external pressure gradient. 

Mixed convection from the horizontal plate is 
shown in Figs. 3(a)-(d). Here only forced and indirect 
free convection are present. Nevertheless the results 
are roughly similar to those for the vertical plate. The 
aiding case has been investigated by various authors 
[l, 5-71 and the results are no longer a point of dis- 
cussion. But this is not true for the opposing case. For 
this case numerical results were supplied by Schneider 
and Wasel [7] and by Raju et al. [5]. Both studies 
claimed a singular behaviour at a point with finite 
positive wall shear stress. The numerical results of the 
present study cannot support these findings, although 
it must be stated, that for all cases with opposing 
indirect free convection the numerical solution is 
extremely difficult. A detailed discussion of the 
numerical problems, which cannot be regarded as 
fully understood, is given in ref. [14]. Nevertheless the 
new numerical data are believed to be the most reliable 
results available for the problem. 

The solution near separation again is of the square- 
root-singularity type with the origin of the singularity 
fixed at the point of zero wall shear stress. Up to now, 
the basis for this statement is more or less empirical 
leaving the answer to a theoretical investigation fol- 
lowing the lines of the analysis by Goldstein [13] and 
Stewartson [ 151. The separation points predicted for 
the horizontal flat plate are Gr,/Re:” cos c& = 
-0.08878 for the constant wall temperature and 
&,/Rez cos & = -0.03120 for the constant sur- 
face heat flux case. As for the vertical plate the 
heat transfer remains finite at separation, although 
a strong gradient for the heat transfer rate is found 
near the singularity. 

A third case with only two of the three mechanisms 
present is the,fiee convection from a slightly inclined 
horizontal plate. The basic indirect free convection 
is disturbed by the direct free convection buoyancy 
forces, either in an aiding or in an opposing manner. 
For this flow the initial solution at .X = 0 is not the 
Blasius profile, so that equation (7) is no longer ade- 
quate. In addition different buoyancy parameters, 
(Gr, cos a) “’ cos (x for T, = const. and (6% cos CL)“~ 
x tan c( for & = const., have to be introduced. The 
resulting equations are not given here, since they are 
given in Jones [8], who investigated this problem for 
the first time (only T, = const.), and in ref. [14] (both 
T, and & = const.). 

The most important feature of the solution by Jones 
was the complete regularity at the point of vanishing 
skin friction. Although a strong growth of boundary 
layer thickness was observed in the separated flow 
region, the growth rate remained finite for all .Y. This 
increase in boundary layer thickness is part of the 
mechanism enabling the solution to stay regular at 
separation. The effect of indirect free convection, 
which is responsible for the original forward flow, is 
proportional to the boundary layer thickness. Thus 
the boundary layer growth enhances the forward Sow 
again, as soon as a backward flow region begins to 
develop. Thus a balance between aiding and opposing 
buoyancy forces is kept even beyond the separation 
point. Mathematically this balance manifests itself in 
the non-trivial )I-momentum equation (3). 

By means of the nowadays largely extended 
computational facilities it was possible to extend 
Jones’ solution further downstream. In addition 
the analysis was extended to include the constant sur- 
face heat flux boundary condition, The results are 
sketched in Figs. 4(a)-(d) (in cl:, now Vi = 

* @*AT* cos rr g L *- ‘~2*v”2)2!5). It should be pointed 
out that for opposing direct free convection the nega- 
tive skin friction in the backward flow region does not 
grow monotonically, but takes a maximum and then 
decreases again tending to zero asymptotically. The 
structure of the separated flow far beyond the point 
of zero skin friction, which can be analysed by the 
method of matched asymptotic expansions, wili be 
discussed in an additional paper [16]. 

In the constant heat flux results a strange oscillation 
of the friction coefficient occurs in the separated 
region. Up to seven zeroes could be resolved by the 
numerical computations. Probably there is no physi- 
cal counterpart for this solution behaviour; never- 
theless the solution obviously is correct from a purely 
mathematical point of view and it is of some interest 
due to its curiosity. The velocity profiles of this solu- 
tion (not given here, see ref. [14]) have as many zeroes 
as the skin friction distribution upstream of the x 
location under consideration. 

The location of the separation point is (Gr, 
x cos a) “’ tan c& = -2.224 for T, = const. and 
(C?Y, cos c() ‘I6 tan a], = -2.830 for C& = const., 
respectively. 

The heat transfer results are similar for both ther- 
mal boundary conditions. In the aiding case the trans- 
fer rate is increasing monotonjcally, whereas in the 
opposing case it decreases and finally tends to zero. 
This is due to the strong boundary layer growth for the 
separated flow resulting in a vanishing temperature 
gradient at the wall. 

A special diagram has been developed to present 
the complete solution in one picture, sketched in Fig. 
5. Solutions already known from the literature are 
included with their range of validity. Skin friction and 
heat transfer results can be plotted as contour maps 
into the plane defined by the two local buoyancy par- 
ameters. For any given configuration (p*, AT*, g*, 
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FIG. 3. Friction coefficient and Nusselt number for mixed convection from a horizontal flat plate: (a), (b) 
constant wall temperature; (c), (d) constant surface heat flux. 
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FIG. 5. Structure of a contour map for the complete solution for mixed convection from inclined plates 
with references to solutions known from the literature. 

x*, \I*, CT*, ) the solution for growing .Y is located on 

parabolas beginning in the mid-point of the diagram. 
The parabola for a certain configuration can be iden- 
tified by a dimensionless .u-independent parameter 
combining the original buoyancy parameters. For the 
constant wall temperature case this combination is 

Gr cos’ c( 
(g+os c?) 

Re’ sin LX Gr, 

Re,? s’n r 

for the constant surface heat flux case it is 

dr cos’ c( 

Re4 sin’ c1 = 

Only two free parameters are left in the diagram, the 
thermal boundary condition and the Prandtl number. 
In Figs. 6(a) and (b) the results for the case 
T,, = const. are shown together with a solution for 
vanishing mainstream velocity. This asymptotic solu- 
tion can be extracted from Jones’ study of free con- 
vection at the flat plate slightly inclined from the hori- 
zontal. From these pictures it can be concluded that 
the solution on the right-hand side of the diagram 
(Gr,/Re~‘2 cos tl > 0) is similar to the one given by 
Jones (Fig. 5) with regular behaviour at separation. 
For Gr,/Re,:!’ cos GI < 0 (left-hand side of the dia- 
gram) the solution is roughly similar to the singular solu- 

tions of Figs. 3 and 4. Thus major parts of the diagram 
(left-hand side) cannot be filled by boundary layer 
theory calculations. The parabola marked in the 
upper left part is the limiting case of marginal separ- 

ation. For a solution in the left neighbourhood of this 
line. a separation bubble would exist in the real flow. 
The numerical boundary layer solution is terminated 
by a singularity at the onset of backflow. The same 
mechanism that keeps the solutions regular in the 
right half of the diagram supports the singularity in 
the left half. In both cases the opposing buoyancy 
forces are enhanced by the boundary layer growth. 

The results for &, = const. in Figs. 7(a) and (b) are 
qualitatively similar to those for r, = const. The only 
major differences occur in the lower right part of 
the diagram where regular separation is found. These 
differences are principally the same as those for pure 
free convection in Figs. 5(a) and (c). 

The singularity found by Merkin for mixed con- 

vection at the vertical plate is an important point in 
all these diagrams. This solution obviously marks the 
limit between singular and regular behaviour at sep- 
aration. In the vicinity of this point the gradients 
observed in the contour plots are increasing strongly 
with decreasing distance to the singularity. The devcl- 
opment of Merkin’s singularity from the original rcg- 
ular behaviour can be analysed by an asymptotic 
approach, which will be discussed in a subsequent 
paper [16]. 

Since the results in the upper right parts of the 
contour maps (purely accelerated flows) have a rather 
simple structure. it was possible to represent thcsc 
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OSa 

FIG. 6. Contour maps with results for mixed convection from 
inclined plates for the constant wall temperature case: (a) 
friction coefficient, lines of constant qT IMP,!*’ ; (b) Nusselt 

number, lines of constant - iVt.4, Re, “2. 

results by correlation equations. Such simple equa- 
tions make the numerical data easily accessible for 
practical use, reducing the huge amount of data to a 
few constants. The correlation equations and their 
derivation are described in the Appendix. 

4. CONCLUSIONS 

A systematic approach covering ail cases of mixed 
convection from an inclined flat plate has been 
developed. The dependence of the local skin friction 
coefficient and Nusselt number on the inclination 

FIG. 7. Contour maps with results for mixed convection from 
inclined plates for the constant surface heat flux case: (a) 
friction coefficient, lines of constant c,., ReJf2 ; (b) Nusselt 

number, lines of constant - Nu, Re,: “2. 

angle, on the thermal boundary condition, and on the 
fluid properties has been reduced into an adequate set 
of dimensionless numbers and then been discussed 
qualitatively on the basis of plotted results of the 
numerical solution. For a qualitative survey of the 
solutions, a special contour map diagram has been 
developed showing friction coefficients or Nusselt 
numbers over a plane defined by the two local buoy- 
ancy parameters. Quantitative results are provided 
for the accelerated flow cases by means of simple 
correlations given in the Appendix covering the whole 
range of free parameters including the influence of the 
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Prandtl number, although the detailed analysis for 
low and high Prandtl numbers wilt be given in Part 
II. For the cases with opposing buoyancy forces the 
separation points have been determined and the 
behaviour in the vicinity of the point of zero skin 
friction has been analysed whether the separation is 
singular or regular. A more detailed discussion of 
the phenomena encountered during the analysis of 
regular and singular separated flows will be given in 
an additiona paper. 
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APPENDIX 

Following a proposal by Churchill and Usagi [I 71 a simpic 
correlation can be derived from the self-similar solutions ot 
the basic flows of pure forced and pure free convection. Thus 
the huge amount of data produced during the numerical 
solution of the complete partial differentiai equations can be 
reduced to a form suitable for publication. The results of the 
correlation were tested versus the exact numerical solution 
and a maximum error of 5% was found. 

There are two sets of correlation equations corresponding 
to the two different thermal boundary conditions 
T,+ = const. and & = const. investigated. whereas the depen- 
dence on the Prandtl number and on the two buoyancy 
parameters is taken into account by explicit occurrence of 
these quantities in the correlations. 

T, = const. : 

i& = const. : 

with the results from forced convection similarity solutions 

f’,, = 0.3320 

/liv = [(0.5642Pr”‘)-J~“+(0.3387Pv’ “)-” “I- ’ ” 

f,,, = 0.3320 

,f,,, = [(0.8862Pr’~‘)-4~h+(0,4636Pr”3)-46]-”46 

and with results from indirect free convection similarity 
solutions 

and with results from direct free convection similarity 
solutions 

f;, = [(1.513)~‘“+(I.l66Pr ’ “) “1 ‘L’y 

,f;& = [(0.6004Pr”Z)-2 ’ + (0.5028Pr”4)-‘-3]-“2 ’ 

,&, = [(~.756~r~3~‘“)-4”+(1.544~r-2’5)~4”]-”4” 

.fs,, = ~(0,7409~r~‘~)-*~~ +(0,6316~r’!5)-2 “I- 1!2.8. 



Mixed convection from an arbitrarily inclined semi-infinite flat plate-l 1945 

CONVECTION MIXTE SUR UNE PLAQUE PLANE SEMI-INFINIE-I. INFLUENCE DE 
L’ANGLE D’INCLINAISON 

R&m&--La couche limite laminaire sur une plaque plane semi-infinie arbitrairement inclinbe. chauffee et 
refroidie, est ttudiee pour determiner l’influence des forces de flottement sur l’bcoulement force de base. 
Le domaine complet d’angle d’inclinaison incluant les MS particuliers de la plaque horizontale et verticale 
est consider6 en prenant en compte a la fois les composantes du vecteur graviti, normale et parallele a la 
surface. La variation systbmatique des paramttres libres est faite en etudiant differentes conditions aux 
limites thermiques et differents nombres de Prandtl (discussion en seconde partie). Un resultat remarquable 
de cette etude est que pour des forces de flottement en opposition il peut apparaitre un comportement 

regulier aussi bien que singulier. 

GEMISCHTE KONVEKTION AN EINER BELIEBIG GENEIGTEN 
HALBUNENDLICHEN PLATTE-I. DER EINFLUSS DES ANSTELLWINKELS 

Zusammenfaasung-Die laminare Grenzschichtstromung an einer beliebig geneigten halb-unendlichen 
ebenen Platte, die entweder geheizt oder gekiihlt ist, wird untersucht, urn den EinfluR der Auftriebskrlfte 
auf die urspriingliche erzwungene Konvektionsstromung zu bestimmen. Alle miiglichen Anstellwinkel 
einschlieglich der Sonderfalle horizontale und vertikale Platte kijnnen durch die Beriicksichtigung beider 
Komponenten der Vektors der Erdbeschleunigung, normal und parallel zur Oberfl~che, erfasst werden. 
Die Untersuchung wird vervollstandigt durch eine Variation der thermischen Randbedingung und der 
Prandtl-Zahl (wird in Teil II abgehandeh). Ein bemerkenswertes Ergebnis dieser Arbeit ist die Erkenntnis, 
dal3 bei auftriebsinduzierter Ablosung sowohl singullres als such regulares Verhahen am Ablosepunkt 

auftreten kann. 

CMEIIIAHHAII KOHBEKUHII OT I-IOJIYEECKOHE~HOti I-IJIOCKOti I-IJIACTHHbI C 
I-IPOMBOJIbHbIM YI-JIOM HAKJIOHA-I. 3@@EKT YFJIA HAKJIOHA 

&mOTalIllti UeJlblO Ol'I~Ae~eHH~ BJlHXHHn lTOAW%tHbIX CHJI Ha BbEIyX(AeHHyIO KOHBeKUHlO HCCJIC- 

AyeTCn JIaMHHapHbIfi IIOrpaHHvHblti CJtOii Ha llOJly6ecKOHe'UiO#i IUlOCKOfi IIJlaCTHHe C lIpOH3BOJlbHbW 

yrJlOM HaKJlOHa, KOTOpan HarpeBaeTCn IiJlH OXJlaxAaeTCn. AHaJIH3HpyeTCn UIHPOKHk AHalla30H yrnOB 

HWlOHa(BKJIWtall oco6ue CJlyVaH rOpH30HTa,tbHOii H BepTHKaJlbHOfi lIAaCTHH)llpH FeTe 06eHX KOM- 

llOHeHT BeKTOpaCHJlblTn;acecrH,T.e.llOIle~~HOfi H IlpOAOJIbHOii OTHOCHTeJlbHO IIOBepXHOCTH. Bapbwpo- 

BaHHe CBO6OAHMX IlapaMeTpOB OCyIUeCTBJlneTCn 38 CYeT HCIlOJlb30BaHHn pa3JIH'iHbJX TeILllOBbIX 

QJaHH'iHblX yCJlOBHii H H3MeHeHHn 'iHCJIa ~piUiATJlSI(CM. BTOpylo SGTb pa6oTu). OAHHM H3 HaSi6Onee 

CyUWCTBeHHbIX ~yJIbTaTOBpa6oTbl nBAWTCnyCTaHOBJIeHHe TOrO+UTi3,YTO lIpHA&TBHHlIPOTHBO- 

nonoxcnonanpasnemibrxcnnh4orer Ha6ntoAaTbcnKaKcmrynnpHoe,TaK H perynnpHoenoBeAeHHe. 


